Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive T1 Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells
نویسندگان
چکیده
Mesoporous silica-coated hollow manganese oxide (HMnO@mSiO(2)) nanoparticles were developed as a novel T(1) magnetic resonance imaging (MRI) contrast agent. We hypothesized that the mesoporous structure of the nanoparticle shell enables optimal access of water molecules to the magnetic core, and consequently, an effective longitudinal (R(1)) relaxation enhancement of water protons, which value was measured to be 0.99 (mM(-1)s(-1)) at 11.7 T. Adipose-derived mesenchymal stem cells (MSCs) were efficiently labeled using electroporation, with much shorter T(1) values as compared to direct incubation without electroporation, which was also evidenced by signal enhancement on T(1)-weighted MR images in vitro. Intracranial grafting of HMnO@mSiO(2)-labeled MSCs enabled serial MR monitoring of cell transplants over 14 days. These novel nanoparticles may extend the arsenal of currently available nanoparticle MR contrast agents by providing positive contrast on T(1)-weighted images at high magnetic field strengths.
منابع مشابه
Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملPoly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such ...
متن کاملIn-Vivo Positive Contrast Tracking of Bone Marrow Stem Cells Labeled with IODEX-TAT-FITC Nanoparticles
Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) possess tremendous therapeutic potential because of their capacity to differentiate into multiple functional lineages. To assess the efficacy of BMSCs cell therapy, MRI methods are being developed to monitor their bio-distribution in longitudinal studies. Although, labeling BMSCs with iron-oxide nanoparticles can facilitate their i...
متن کاملThe effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells
Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...
متن کاملSynthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents
Manganese zinc ferrite nanoparticles (MZF NPs) were synthesized by using a direct, efficient and environmental friendly hydrothermal method. To improve the colloidal stability of MZF NPs for biomedical applications, NPs were coated with chitosan by ionic gelation technique using sodium tripolyphosphate (TPP) as crosslinker. The synthesized NPs were characterized by X ray diffraction (XRD) analy...
متن کامل